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ABSTRACT The development of safe human-robot collaborative systems is crucial to the future advance-
ment of the manufacturing industry. This is particularly relevant to companies that already utilize robots
alongside human workers in collaborative tasks such as product co-assembly. However, as industry standards
require workers to continually be in closer proximity to these robots with powerful capabilities, it is vital that
workers are kept safe, especially when entering the robot’s envelope or workspace. The proposed approach
in this paper allows both the human and robot to make the best use of their respective capabilities, while
constantly monitoring the human worker’s emotions in order to prevent accidents. This additional layer of
understanding allows the robot to respond appropriately to its human counterpart’s feelings. Having robots
take over tedious, repetitive tasks enables human workers to focus on controlling the more complicated
decision-based operations. Allowing robots to understand the nuances within subjective human emotions
empowers them to respond to the expression of a given feeling appropriately. This subjectivity of human
behavior in human-robot collaborative contexts has not been extensively studied in the field. We explore the
potential results of robots appropriately responding to human emotions in a manufacturing setting. To allow
for safe human-robot interaction and collaboration, we employ a transfer learning-based method of teaching
the robot to discern various human emotional states. This method allows the robot to be able to understand
and properly respond to its human partner’s emotional states, while collaborating with a human on a job.
Within our approach, the speed of the robot’s actions changes in response to the human’s perceived feeling.
For example, detected sadness or discomfort in humans causes the robot to slow down, while perceived
happiness and satisfaction result in the robot increasing the pace of its work to match its partner’s attitude.
Our method allows for greater understanding between a collaborative human-robot pair, leading to both
robot-leveraged efficiency and a reduction in safety risks in the workspace. The results of our experiments
show how a robot can correctly detect real-time changes in human expressions and apply this understanding
towards safely co-assembling a product with a human. The future work of our study is also discussed.

INDEX TERMS Robotics, smart manufacturing, human-robot collaboration, comfort, human factors,
computer vision.

I. INTRODUCTION

DESPITE major advancements in large-scale manufac-
turing technology, there are still many physically tax-

ing tasks carried out only by humans [1], [2]. As industry
sectors increasingly adopt smart manufacturing techniques
where robots are employed and trained to perform certain

kinds of work, tasks will be optimized using collaborative
robots in order to alleviate humans’ strains on the body and
enhance manufacturing efficiency [3]–[5]. Constant change
and perpetual evolution are to be expected in today’s fast-
paced world. For industries to thrive and become more cost-
effective and efficient, they must closely track current and fu-
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ture market needs [6]. This cannot be accomplished without
delving into futuristic, boundary-pushing technology that is
more than likely unfamiliar to current industry professionals.
What is considered cutting-edge today can become industry
standard tomorrow and, in due time, entirely obsolete [7].
One way to increase workflow efficiency is by utilizing
robots to assist humans with tedious, mistake-prone tasks.
For example, autonomous mobile robots assist humans by
independently carrying heavy payloads through warehouses
[8], [9]. Additionally, robots with computer vision can au-
tomatically determine whether additional work is required
to assure optimal safety and quality [10], [11]. When robots
assist humans with tasks, they work with a high level of ac-
curacy that surpasses that of humans working independently
[12]. Businesses that employ collaborative robots oversee
research on them prior to production implementation, so the
robots can be seamlessly added to the formerly human-only
job. This ensures that necessary safety regulations are fol-
lowed, human workers acclimate to their mechanical cowork-
ers, and operations are completed as expected in the industry.
The constant changing of the industrial landscape motivates
companies to continually adjust their operations towards
technological progress; the sectors that succeed in integrating
smart technology into their workforce reap the benefits. They
harness technology’s power to complete intensive work, and
humans’ safety and comfort are enhanced as a result.

Rather than jeopardizing occupational health and safety by
pushing human employees to their physical limits for the sake
of keeping up with production, industries can reduce risks
while making production more time-efficient with the use
of robots. Human-robot collaboration (HRC) enhances the
level of human’s engaging tasks in the workplace [13]–[15].
It lets people focus on jobs involving leadership, planning,
and problem-solving, while eliminating the risk of physical
injuries caused by intensive and dangerous work that humans
otherwise conduct in the manufacturing setting.

The involvement of collaborative robots and smart tech-
nologies is a humane way of alleviating difficulties for in-
dustrial employees and increasing the quality of production
work. Relative to the limited decision-making capabilities
of today’s robots, humans hold these competencies natu-
rally and thus are able to direct robots in completing given
tasks. As robots’ scope of manufacturing skills consists of
objective, direct instructions, they are less flexible in going
outside the bounds of their abilities unless trained to do so
[16]. When testing the use of a robot in the industry, human
safety protocols need to consider the static way in which
robots perform tasks [17]–[19]. As robots are programmed
to perform tasks in a vacuum, outside changes to their
environment are not accounted for. Robots continue to run
as they are programmed to in an altered setting, unless a
change of setting is accounted for in their code. For example,
a robot may not slow down its movements when its human
operator walks up too close. This is a potential source of
human injuries and equipment damage in the workplace.
Robots’ level of ability in adjusting to unexpected real-time

changes should be considered during the research stage of
implementing a robot in the work environment.

In anticipation of a technologically driven future of man-
ufacturing, we propose the use of a standard web camera
for robots in learning the differentiation between different
human emotions. This method is more accessible and direct
in human-robot collaboration than alternative safety proto-
cols (e.g., the use of proximity sensors). Our method enables
robots to understand human responses to their movements
more accurately, improving the human experience in the
workplace. Additionally, utilizing robots that understand how
people are feeling keeps the decision-making in workers’
hands, while removing certain draining activities that drag
down the work process. Several studies have been conducted
on emotion recognition in robot-assisted healthcare through
EEG sensors [20]. However, developing a more intuitive
and effective approach (e.g., using a general web camera)
to detect and respond to human emotional expression in
human-robot collaborative manufacturing contexts remains
understudied and underutilized. The contributions derived
from our study can be summarized as:

(1) We put forth a novel solution in improving human-
robot collaboration safety by enabling robots to proactively
empathize and understand human emotions in shared tasks.

(2) We develop a transfer learning-based approach to em-
power robots to accurately accommodate and assist human
partners in collaborative tasks using only a small emotion
dataset.

(3) The proposed approach is experimentally implemented
in real-world human-robot collaborative manufacturing con-
texts. The results and evaluations demonstrate that the robot
can precisely understand human emotions in real-time and
effectively help its human partner in the co-assembly task.

II. RELATED WORK

In recent years, several efforts have been made in con-
sideration of collaboration-safety in human-robot teams. A
wide variety of different strategies and safety procedures
have been proposed to make working comfortably alongside
robots feasible. Researchers across this field are looking into
many different techniques to make human-robot collabora-
tion safer. The workplace is moving away from robots being
tucked away from humans and is progressing towards en-
abling a symbiotic relationship between humans and robots
[21]–[23].

Some researchers are looking into the concept of creating
a non-physical barrier for the robot to remain inside in order
to detect whether the robot is following safety procedures.
The work [24] introduces a light projection system that
helps identify when the robot has gone out of its proper
bounds. Sensing when the robot has breached its light-ray
boundary allows for other safety measures to be taken. This
is contrary to the archaic procedure of keeping humans and
robots completely separate. Multiple safety boundaries with
unique shapes can be created using this technique.
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Although a light boundary can be useful when defining
safety parameters, it is not very efficient when humans and
robots are enveloped in the same workspace. Assembly lines
require parts to be passed along from robot to human and
vice versa. There needs to be areas that both the human
and the robot are able to occupy simultaneously. Because
of this need, tracking where the human is working and
moving is vital. Scientists have utilized jackets with different
colored sections to keep a robot’s eye on where the person’s
shoulders, elbows, and wrists are located throughout col-
laboration. This input provided by a triple-camerathe stereo
vision system, allows image coordinates to be generated.
When the human wears the jacket, the system tracks where t
Another study in this field focuses on ways to use sensors to
detect unexpected changes in the environment. These sensors
acquire the distance from new entities within the workspace.
For example, if a human were to enter the workspace, the
robot would take notice and select its actions based on a
positive desired effect for the person’s safety. This is done by
utilizing distance sensors that surround the cylindrical part of
the robotic arm, which reaches out when completing tasks.
These nerve-like sensors covering the robot allow it to sense
motion from every direction. It would not be able to do this
if the sensors were just arranged in one direction [25]. The
more directions the robot can sense, the more accurate safety
protocols can be. Calculations of velocity and inertia are used
when determining if an action is safe enough to be taken
when a person is in the proximity of the robot. If the action
is deemed too dangerous, then an alternative, safer action is
taken.

Measuring the possible danger level throughout all robotic
actions could establish better safety for the human participant
in human-robot interaction. This way, if the danger level is
too high, the robot can back off or take another action. A
perceived danger level can be generated by giving the robot
the ability to view and monitor the human’s behavior. This is
done to make the given human-robot interactions safer. Phys-
iological indicators such as skin conductance response, heart
rate, and corrugator muscle activity are monitored. These
metrics track anxiety in the human counterpart throughout
every interaction [26]. Detecting uneasiness in participants
can help prevent this course of action from recurring.

Methods to keep track of scenarios that have the potential
to play out the wrong way are also being developed. These
methods allow for the creation of safety plans that are initi-
ated if potential danger is sensed, and they help take the safest
path possible. This ensures that the robot carefully considers
how its next steps affect the potential danger level based on
the velocity and distance of the human [27]. As an additional
safety measure, this study develops measures that determine
the signals for when it is appropriate for the robot to withdraw
from a collaborative task (e.g., humans suddenly raising their
hands).

However, simply monitoring a variety of physical changes
and putting safety procedures in place is not sufficient. Since
humans have a much wider perception of their surroundings,

they might perceive actions quite differently from the way
robots perceive them. Humans can sense danger outside of
the scope of a robot’s cognition. Therefore, human discom-
fort in a variety of situations must be acknowledged by
having the robot respond in a way that makes the person feel
comfortable and listened to.

Emotion recognition-driven human-robot collaboration
strategies have been studied to alleviate this gap in recent
years. Different approaches and solutions have been devel-
oped aiming to facilitate human-robot interaction and col-
laboration [28], [29]. The authors in [30] presented a facial
emotion recognition method based on 2D-Gabor and uniform
local binary pattern operator, and tested it in simulation
scenarios. A multimodal emotion recognition solution with
evolutionary computation was developed for human-robot
interaction in service robotics contexts [31]. An approach
for adapting the cobot parameters to the emotional state of
the human worker was presented in [32], which employed
the Electroencephalography technology to characterize and
understand the human emotional state. However, few studies
have implemented emotion recognition-enabled solutions in
real-time physical human-robot collaborative tasks, particu-
larly with collaboration-safety considered.

To solve the issues mentioned above, we present a new
approach that teaches a collaborative robot to recognize how
its human counterpart individually displays seven different
emotions. Allowing the robot to shape its own understanding
of each human’s individual emotion is important because not
every human outwardly displays emotions in the same way.
Our technique ensures that the robot can recognize subtle
changes in expression, which means that if the data fed into
training is accurate, even slight discomfort can be identified.
This way, the robot only takes swifter actions when the
human is displaying positive emotions. The robot should be
able to sense how its human co-worker is feeling in order to
respond in a way that lets the person feel that he/she is being
catered to.

III. MODELING METHODOLOGY

A. TRANSFER LEARNING

Traditional machine learning models require separate
training for each separate class when two or more classes
exist. This process is time-inefficient due to the entire train-
ing process being restarted and completed for each class.
Transfer learning bypasses this issue by drawing upon a
wide library of public data; the learning system, or pre-
trained model, can be used to transfer new data and the
newly assigned task into our model, as shown in Figure 1, in
order to generate the desired outcome [33], [34]. By sourcing
knowledge from an already trained model, we are able to
shorten the process of teaching new operations to a robot
based on an existing learning system. New information is not
saved in traditional machine learning; when working with
multiple individual tasks, differentiated networks should be
used for each [35]. Every stage of this procedure should lead

6 VOLUME 3, 2024



H. Diamantopoulos et al.:You are in My Heart: Enhancing Human-Robot Collaboration-Safety

to a specified outcome in order to make the model applicable
to the studied problems. The model’s input must be precise
and relevant to the collaborative problem it is designed to
solve. In the transfer learning system, a network trained on
a different domain can be used as a source task. The learned
knowledge will be transferred to the domain and employed in
the target task. The previously trained model utilizes millions
of labeled images. This large amount of data helps initiate
the development process quicker than if we were starting the
process from scratch.

The additional component to preparing the desired task
with the transfer learning approach is a small set of locally
stored data. A model that uses this dataset can be built in a
variety of ways, whether it be a single person’s emotional
expressions or those of multiple people. The model is con-
structed in a time-efficient manner due to the utilization of
the pre-trained weights. Additionally, the learning process
in transfer learning is faster and more effective than that in
traditional machine learning.

FIGURE 1: Transfer learning VS traditional machine learn-
ing.

B. VGG16

We teach the robot to differentiate between human emo-
tional reactions using VGG16 in our transfer learning ap-
proach. As a Convolutional Neural Network, VGG16 con-
sists of 3 defense layers and 13 convolutional layers to
add a 3 x 3 size filter to the captured image [36], [37].
When new input is processed through the VGG16 network
layering, a feature map becomes more accurate. The 13
convolutional layers are organized into two two-layer par-
titions and three three-layer ones. The partitions include a
pooling layer that flattens the image, halves its file size, and
highlights whichever characteristics of the image are most
prominent. Rectified Linear Units (ReLU) prevent the decay
of accumulated information with time. A library of more
than 14 million image files goes into training the VGG16
network [38]. Complex Convolutional Neural Network mod-
els require a Graphics Processing Unit (GPU) relative to
the number of mathematical operations needed to complete
the training. This is because the GPU allows calculations to
occur in parallel or at the same time. Although a GPU is still
very important for this emotion understanding study, utilizing
transfer learning with a VGG16 pre-trained model to teach
the robot in human-robot collaborative tasks is less strenuous
on the hardware requirements.

FIGURE 2: Human emotion data collection process.

C. HUMAN EMOTION DATA COLLECTION

In order for the robot to work collaboratively with the
human and adjust its actions accordingly, the robot must be
able to identify different human emotions. For this level of
understanding to be reached, pictures of the human portray-
ing each of the emotions that are to be understood must
be acquired to train the robot’s cognitive capacity. Figure 2
demonstrates the human emotion data collection process in
the experimental space. The participant looks at the camera
and forms the seven distinct facial expressions (happiness,
anger, fear, sadness, disgust, surprise, and neutral) as the
system takes and saves images. Unintentional disruptions and
shifts in expression, such as a blink, are accounted for as
the camera rapidly takes photos. The human should not only
look directly into the camera while these frames are being
captured because people’s movements in daily life are more
unpredictable. Therefore, for the model to work effectively
at different angles of view, capturing multi-faceted pictures
is essential. This approach is comparable to a person putting
their finger on a fingerprint scanner for the first time and
having to move their finger on the scanner, so that the
machine captures many different angles of the fingerprint.
During the adoption of an application, the data collected from
its users is also as detailed as possible. The robot absorbs new
information in the collected dataset based on the VGG16 pre-
trained model. After the data is gathered, we create a system
for detecting the photographed emotion in real-time, to be
employed by the robot. The emotion recognition system then
lets the robot interact with its human partner by sending the
appropriate command to the robot’s local controller.

D. SMALL LOCAL EMOTION DATASET

A general web camera is utilized as the robot’s “eye” to
capture human emotion information. We develop a script that
collects, names, and archives the photos of the expressions;
this is done as the human is modeling emotions in front of the
camera. As the field of human-robot interaction encompasses
a wide variety of potential situations, as shown in Figure 3,
we chose to represent seven kinds of expressions commonly
used by humans on a daily basis [39], [40], with 100 pictures

VOLUME 3, 2024 7



H. Diamantopoulos et al.:You are in My Heart: Enhancing Human-Robot Collaboration-Safety

taken of each (as contrasted with the millions of photos in the
VGG16 library). When collecting human emotion images,
the HAAR cascade algorithm [41] is employed to accurately
detect and capture the areas of a human face. We found
that the human facial expressions were able to be correctly
acquired even when the background of the working environ-
ment was complex or dynamic. In addition, different angles
and varying levels of each emotion are performed by the
participant in the image collection process. Human emotions
are not always extreme. It is important that our approach can
pick up on subtle changes in emotions and still understand
how the human is feeling. The completed set of images is
saved in the given proportions and grayscale. The bottleneck
features are selected within each set of emotion photos. This
method is rooted in the VGG16 learning methods, and the
robot applies this with transfer learning.

FIGURE 3: Human emotions adopted in this study.

E. HUMAN EMOTION-BASED PERCEPTION IN HRC

In this study, a robot is taught to respond to a human’s emo-
tional stimuli in a collaborative setting, with the goal of hav-
ing a robot learn how to process such stimuli. Using VGG16
and a local library of emotional expression photographs as a
framework, the robot deepens its own knowledge base with
transfer learning. Its newfound competencies allow the robot
to tell which emotion its human coworker displays; the robot
can then apply this knowledge to the collaborative process
with the human. The newly introduced data and policy are
processed using the robot learning, which is shown in Figure
4 with the online emotion understanding method.

FIGURE 4: The framework of the robot learning approach.

We define the following variables in the context of robot
learning: the VGG16 source domain DS , a target domain for
comprehending facial expressions DE , the VGG16 learning
task TS , and a task for emotion learning TE . With these
variables, we build an emotion prediction function f∗

e (X
′).

The possible results of f∗
e (X

′) can be produced in DE by
the transfer learning using the knowledge in DS and TS ,

where DS ̸= DE or TS ̸= TE . The collected emotional
expression data is represented by X , and the online emotion
data is denoted by X ′. For every set X ′, the perceived human
emotion E∗ can be derived from the predicted outcomes:

E∗ = argmax
e=1,2,...,M

f∗
e (X

′)
(1)

where M represents the quantity of emotion categories; M
is 7 to represent the seven emotions tracked in our study. Eq.
(1) will enable the robot to qualify what emotion the human
is displaying. Further, the emotion understanding results will
allow for humans to be more confident in collaborative tasks
with robots; the humans can expect that their emotional
states will be analyzed and responded to accordingly by
robots through the proposed human emotion-based percep-
tion framework in human-robot collaboration.

IV. EXPERIMENTAL PLATFORM

A. EXPERIMENTAL PLATFORM

Figure 5 presents the components of our experimental
workspace: a co-assembly robot, a camera, a workstation,
an object to be assembled, and a work area to be used
by both the human and robot. A vehicle model is used as
the target object in the human-robot co-assembly task. This
study uses a Franka Emika Panda, a 7-DoF collaborative
robot that is equipped with a two-finger parallel gripper, a
pilot-user interface, and a Franka Control Interface (FCI)
controller [42], [43]. The Franka Emika Panda can safely
collaborate with humans in a way that simulates the inter-
action between humans. The study also uses a ThinkPad
P15 with an Intel Core I9-10885H processor and 64GB of
memory; this workstation processes emotional images and is
the center of our transfer learning system’s development. It
also assists with detecting emotion in real-time and mapping
the robot’s actions. The Robot Operating System (ROS) is
utilized in managing our robot system [44], [45]. ROS is
an open-source framework for inter-platform maneuvering
and communication on a large scale. In addition, the study
uses MoveIt! and runs it with the ROS operating system.
MoveIt! is a library of ROS-compatible packages, tools, and
software that enables the user to modify the actions of a
robot. ROS simulation software allows for the development
of robot path planning algorithms [46]. To plan the robot’s
movements in human-robot collaborative tasks, the control
commands are sent to the libfranka interface, which is a ROS
package that allows for the Panda robot to communicate with
the FCI controller. The FCI will provide the current robot
states and enable the robot to be directly controlled by the
commands derived from the robot’s real-time perception of
human emotions.

B. TASK DESCRIPTION

We validated the time efficiency and correctness of our
developed approach by carrying out real-world human-robot
collaborative experiments. In these experiments, the human
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FIGURE 5: The experimental platform.

and robot workers partake in a collaborative manufacturing
job. The experiment uses a buildable four-part vehicle (in-
cluding a cargo bed, backseat, front seat, and front of the
car) with four additional detachable wheels as an assembly
prompt that the human and robot are to follow. Our co-
assembly task consists of the robot handing parts of the
car to the human, starting with the backseat and cargo bed.
Once handed all the parts, the human can make sophisticated
decisions in putting together the pieces; this exemplifies how
human-robot collaboration can leave humans in charge of ad-
ministrative tasks while leaving repetitive labor to machines.
Employing our proposed methodology, the robot will be able
to understand and analyze the human’s real-time emotion
expressions. In response to the emotion interpretation data re-
ceived from the online recognition system, the robot changes
its movement and speed so that the human emotional state
is accommodated. By way of example, if the human seems
upset or sad, the robot will slow down its actions. If the
human seems to be happy or in a good mood, the robot
will pick up the pace, matching the human worker’s energy
with a faster speed. If the human feels disgusted, the robot
would actively move away from the human and only start to
collaborate when the human feels better or looks upbeat. This
makes collaborative tasks safer and better the ergonomics of
human-robot relationships. The proposed approach is gener-
alized and not limited to tasks in which humans co-assemble
with robots, or the adopted emotion types. These validation
experiments will serve as stepping-stones to more complex
human-centered collaborative tasks in multiple application
areas such as healthcare and aerospace exploration.

V. RESULTS AND EVALUATIONS

A. EMOTION TRAINING AND CROSS-VALIDATION
ACCURACY

Prior to training the robot, the data received from the im-
ages regarding human emotion is categorized into three main

categories: emotion training data, emotion cross-validation
data, and emotion testing data. The numbers of emotion
images in each category are listed in Table 1.

As shown in Figure 6, at around epoch 8.5, the training
accuracy is 100%. On the other hand, the cross-validation
accuracy reaches 97.82%. Identifying the correct emotions
from images presented beforehand at the fastest speed is a
priority; however, the system also needs to deduce the correct
emotion of new image data that it has not been shown before.
Tracking accuracy during the training process assures that
our system is working properly and connects each individual
emotion with the proper features. It is necessary to confirm
that the robot learning system is outputting consistent results,
regardless of changes in external circumstances. Figure 6
shows that the accuracy levels of both the emotion training
and cross-validation are high once a certain threshold of
epochs is crossed. This indicates that the robot has been
trained well enough to achieve a high level of cognition of
human emotions.

FIGURE 6: Training and cross-validation accuracy of human
emotion understanding.

B. EMOTION TRAINING AND CROSS-VALIDATION LOSS

The robot’s model must be strong in order to properly
work with the seven different emotions. The dataset must
be diverse enough so that the model does not overanalyze
it. A result of data over-analyzation is the model becoming
overly specific to a small number of users or outputting
incorrect results due to different conditions, such as the light-
ing, the background, or the proximity of the human subject.
Understanding and appropriately responding to the detected

TABLE 1: The Numbers of Training, Cross-Validation, and
Testing Images in Each Type

Emotion Type Training Images Cross-validation Images Testing Images
Anger 67 13 20

Disgust 67 13 20
Fear 67 14 19

Happiness 66 14 20
Neutral 67 13 20
Sadness 66 14 20
Surprise 67 13 20
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human emotions is the main priority of the model. In order
to tune the weights during the training process, the model
was evaluated using the cross-entropy loss function [47]. The
predicted probability of each emotion type is compared to
the desired emotion type. A loss value is then computed
to penalize the probability based on how far it is from the
expected emotion type. The penalty is logarithmic in nature,
which generates a larger score for major differences tending
to 1, and a smaller score for minor differences closing to
0. As the loss value becomes lower, the model becomes
more reliable. As shown in Figure 7, the training loss can
reach 0 and the cross-validation loss can reach 0.2. These
results suggest that the robot’s learned model is accurate and
reliable.

FIGURE 7: Training and cross-validation loss of human
emotion understanding.

C. REAL-WORLD HUMAN-ROBOT COLLABORATION

Utilizing the developed approach, human-robot collabo-
rative manufacturing tasks are implemented in a real-world
context. During the human-robot collaboration procedure,
based on the new comprehension acquired from the robot’s
learning, the robot acknowledges how its human partner is
feeling and responds accordingly. As shown in Figure 8, the
robot recognizes when the human is in a good mood and
responds accurately by successfully completing the collab-
orative task. In Figure 8(1), the robot starts the shared job
by picking up the backseat of the car that was placed in the
workspace in front of it. The human simultaneously collects
the other pieces directly in front of them and assembles them.
Afterward, the robot examines the human’s face to assess the
state of emotion she feels. This assessment is based on prior
acquired knowledge and is conducted before continuing with
the collaborative task. As presented in Figure 8(2), the robot
accurately recognizes that the human is expressing a happy
emotion, so the robot quickly hands over the backseat to the
human. In Figure 8(3) and Figure 8(4), the human interacts
with and receives the backseat from the robot. Figure 8(5)
and Figure 8(6) display the human joining the pre-assembled

parts to the newly received segment. The robot system works
with the human at a rapid pace due to the identification of
the human’s positive emotional state. The consideration of
how human feels allows for an efficient and safe human-
robot collaborative task. The real-world experimental video
is available at: https://youtu.be/v488i96LPE8.

FIGURE 8: “Happiness” emotion understanding and human-
robot collaboration in the shared task.

Human emotions are unpredictable, as there are many
factors that lead to their changing during the human-robot
collaboration process. It is important to consider this infor-
mation and ensure that the robot is able to recognize when
its human partner is in a negative mood, so that it can take
the necessary precautions. As shown in Figure 9, the robot
identifies when the human collaborator is in a negative mood
and adjusts accordingly. As exhibited in the prior positive
emotion example, Figure 9(1) presents the robot beginning
its task of helping its coworker by picking up the backseat
from the workspace in front of it. The robot system then
analyzes what emotions the collaborator is portraying before
it conducts the collaborative work. As shown in Figure 9(2),
the robot is cognizant of the individual’s disgusted emotion,
and takes precautions by moving away, in order to make
the human feel better (Figure 9(3) and Figure 9(4)). The
perceived negative emotion in the human causes the robot to
stay distant until it recognizes a positive emotional change,
for example, happiness. As soon as the robot perceives a
positive response, as presented in Figure 9(5) and Figure
9(6), the joint work will continue. With the validation of
the proposed approach in the performed tasks, the robot
displayed that it can accurately analyze human emotional
states and dynamically change its actions while performing
collaborative tasks.

It is crucial that the robot be able to differentiate between
positive and negative emotions so that human-robot collabo-
rations function smoothly and safely. The speed of the robot’s
movement varies based on what emotion it detects. As shown
in Figure 10(1) - Figure 10(3), when the negative emotion
of sadness is identified, the robot moves to the human at a
slower pace. As recorded by the time stamps, the robot takes
nine seconds to deliver the backseat to the human. When
a positive emotion, such as happiness, is detected (Figure
10(4)), the robot delivers the cargo bed to its human partner
at a faster pace (Figure 10(5) and Figure 10(6)). As recorded
by the time stamps, the robot moves at a speed of five seconds
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FIGURE 9: “Disgust” emotion understanding and human-
robot collaboration in the shared task.

when happiness is recognized in the human. This imple-
mentation demonstrates that, when utilizing the proposed
approach, the robot is able to accurately distinguish different
human emotions. Based on the understood emotions, the
robot can adjust how quickly it moves; this is done to make
the human worker feel more comfortable. Setting the robot’s
assisting actions to an appropriate speed, given the emotion
experienced by the human, ensures that the collaborative task
is completed safely and at the speed that best accommodates
the human’s emotion states.

FIGURE 10: Comparison of “Happiness” and “Sadness”
emotion understanding in the human-robot collaborative
task.

D. CONFUSION MATRIX

To confirm that the robot’s learning model correctly pre-
dicts emotional states, we evaluate the produced predictions
through a confusion matrix. The matrix helps produce a
visualization of the number of images that are correctly
categorized by the model. There are four possible options
for how the model predicted the emotion types within the
confusion matrix. The four parameters are true positive (TP),
true negative (TN), false positive (FP), and false negative
(FN) [48]. A TP occurs when the model correctly predicts
the emotion shown in an image. Whereas a TN result shows
that the model is correctly predicting that the image does
not portray a particular emotion. An FP exists when the
model correctly identifies that the emotion shown in an image
is incorrect. An FN occurs when the model’s prediction
states that the image does not show an emotion while the
image contains that emotion. The percentage measures along

the blue diagonal in Figure 11 represent correctly predicted
emotions using the test images, and the percentages in white
display the misidentified emotions. With the occurrence of
only two misidentified emotions (disgust and surprise), these
results exemplify the high accuracy, efficiency, and robust-
ness of the robot’s learning model.

FIGURE 11: The confusion matrix of human emotion under-
standing (the blue diagonal presents the correctly recognized
emotions).

Quick summarization of instance reliability is not the only
data that can be gathered from Figure 11. Calculating TP, TN,
FP, and FN is important because these tests provide valuable
insight into where the model is performing best and where
it has potential for improvement. As shown below in Table
II, most of the possible TPs and TNs are desirable. However,
in future model versions with FNs and FPs, more specific
classification rules can be developed. Identifying sources of
confusion between specific emotions can prevent the same
type of misidentification in future applications of the model.

Further, based on each class’s TP, FP, TN, and FN, we can
obtain the following five parameters for each class: Accuracy,
Error Rate, Macro-precision, Macro-recall, and Macro-F1-
score [49] (as shown in Table III). Each of these parameters
has favorable results. When the emotion metrics are viewed
collectively, the model’s total average accuracy is 99.59% its
average error rate is 0.41%, its average macro-precision is
98.46%, its average macro-recall is 98.57% and the average
macro-F1-score is 98.48%. The individualized breakdown
shown in Table 3 demonstrates the calculated metrics for each
emotion.

TABLE 2: TP, TN, FP, and FN for Each Emotion Understand-
ing

Emotion Type TP TN FP FN
Anger 20 119 0 0

Disgust 19 119 0 1
Fear 19 119 1 0

Happiness 20 119 0 0
Neutral 20 118 1 0
Sadness 20 119 0 0
Surprise 19 119 0 1
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TABLE 3: The Average Accuracy, Error rate, Macro-Precision, Macro-Recall, and Macro-F1-Score of the Proposed Approach

Emotion Type Accuracy Error Rate Macro-precision Macro-recall Macro-F1-score
Anger 100% 0 100% 100% 100%

Disgust 99.28% 0.72% 100% 95% 97.44%
Fear 99.28% 0.72% 95% 100% 97.44%

Happiness 100% 0 100% 100% 100%
Neutral 99.28% 0.72% 95% 100% 97.44%
Sadness 100% 0 100% 100% 100%
Surprise 99.28% 0.72% 100% 95% 97.44%

Average Metric 99.59% 0.41% 98.57% 98.57% 98.54%

E. RECALL MATRIX

Calculating recall produces the proportion of correct de-
sired emotions over the total number of emotions that should
be output from the images provided. This is done through
dividing the total number of true positives by the sum of
the total true positives and false negatives (TP/TP+FN). This
calculation shows where the model understands the correct
emotion. Conversely, the expression reveals places where
positive predictions are not properly identified. As shown in
Figure 12, the overall recall level is high, with most of the
seven emotions (anger, fear, happiness, neutral, and sadness)
being 100% accurate and two (disgust and surprise) being
95%, slightly less than complete accuracy. These calculated
outcomes can be seen in the Macro-recall section of Table III.
Each result is also displayed along the blue diagonal of the
recall matrix in Figure 12. The two instances of inaccuracies
are displayed outside of the blue diagonal, where the 0.05
inaccuracy scores are located. In one of these instances,
the desired emotion was disgust, but instead neutral was
incorrectly understood. In the second case, surprise was the
desired emotion, but fear was incorrectly understood. This
recall matrix indicates that the overall performance of our
model reaches high accuracy.

FIGURE 12: The recall matrix of human emotion un-
derstanding (the blue diagonal presents the recall value
TP/TP+FN of each emotion recognition).

F. PRECISION MATRIX

Calculating precision yields the ratio of correctly matched
emotions to the total number of positive predicted emotions.
This includes both correct and incorrect positive predictions

that the model outputs from the images provided. In other
words, the total number of true positives is divided by the
sum of the total number of true positives and the total
number of false positives: TP/(TP+FP). Calculating precision
helps display how reliable a positive prediction is from the
individual emotion classifier. According to this formula, the
more false positives exist, the worse the predictive ability of
the model. As presented in Figure 13, the overall precision
of the proposed approach was high, with most emotions
(anger, disgust, happiness, sadness, and surprise) being 100%
accurate and two (fear and neutral) being 95%, slightly less
than completely accurate. These calculated outcomes can be
seen in the Macro-precision section of Table III. Each of
these results can also be seen along the blue diagonal of the
precision matrix in Figure 13, while the inaccuracies are dis-
played outside of the blue diagonal. There are also two 0.05s
in the precision matrix, representing inaccuracies, one where
the desired emotion was disgust, but neutral was incorrectly
understood instead. The other occurrence is where surprise
was the desired emotion, but fear was incorrectly understood.

FIGURE 13: The precision matrix of human emotion under-
standing (the blue diagonal presents the precision of each
emotion recognition).

VI. CONCLUSIONS AND FUTURE WORK

This study proposes an effective and novel approach that
enables human-robot collaboration in smart manufacturing
contexts. The developed transfer learning-based method re-
lies on the robot “understanding” human emotions and it does
so based on a relatively small dataset of human emotions. Our
method allows for greater understanding between a collabo-
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rative human-robot pair, leading to heightened efficiency and
a reduction in safety risks in the manufacturing space. This
implementation is shown to be efficient in a real-world appli-
cation of human-robot collaboration. The results verify the
approach’s validity, in that the robot is able to comprehend
its human partner’s emotions. This enables the robot to better
aid the human in collaborative assembly tasks.

While the developed solution was successfully validated in
human-robot collaborative tasks, there are still some misclas-
sifications of human emotions that may adversely affect the
collaboration safety of human-robot partnerships. To mitigate
potential risks, further development and improvement are
needed in order to enable human-robot collaboration in more
complex tasks. The development effort includes the compi-
lation of a more generalized dataset that describes human
emotions. The dataset is comprised of images of humans
conveying seven different emotions, and includes a diverse
range of human emotional imagery, involving different ages,
genders, races, etc. The inclusion of a wider range of emo-
tions is also a future improvement to our dataset. We will
define more human emotions to fortify the robot’s perception
capacity. In addition, we will explore new methods such as
domain adaptation or domain randomization techniques and
incorporate them into our approach to improve the model’s
robustness and generalization. During the human-robot col-
laboration, environmental conditions, such as lighting and
occlusion, may affect the robustness of the developed model.
We will verify the performance of the developed solution
under varied conditions and compare it with baseline models
of emotion recognition. Finally, we plan to recruit more
participants to validate and improve our approach in more
complex human-robot collaborative tasks for accelerating the
transition-to-scale of the proposed approach in future human-
centered workplaces and contexts.
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